
How to Write Clear
Development

Requirements and Bug
Reports

Chris Sharp, GPLS
Grace Dunbar, Equinox

Evergreen Conference 2014

I want to pay for some development… what
should I do?
● Remain calm
● Do you need to go to RFP? maybe...
● What is the human doing?
● Use prose, not perl
● Accommodating other users needs
● A picture says a thousand words

Where do I start?

● Released under the GPL
● Written to Evergreen master
● Engage developer community early and often
● Delivery dates
● Backporting to other versions?
● What about testing and bugs?
● End user docs?

Contracts

https://launchpad.net/evergreen/+series

Don’t forget to engage the community!

We all occasionally have different opinions
about functionality (see: Acquisitions
Workflows), but with a little open
communication we can resolve them to
everyone’s benefit.

Community

● Specificity
● Use cases (no edge cases)
● Workflow without “jargon”
What I am doing:
What happens now:
How I think it should be improved and why:

Anatomy of a good requirement

Tell me what you need to do.

Cindy Circulator needs to be able to remind patrons of local elections.
There should be a mechanism by which the organization can record data
about a patron’s voting district. There also needs to be a mechanism for
the organization to input local election dates tied to the voting districts and
the patrons in those districts. Upon the “trigger” (staff mediated transaction
at a workstation - i.e. not a renewal or computer reservation, etc.) the
system should display a pop-up notice to staff notifying them to remind the
patron of their upcoming election.

Use Cases

But it’s obvious… right?

Draw me a picture...

Images courtesy of Hyperbole and a Half. http://hyperboleandahalf.blogspot.
com/2010/02/boyfriend-doesnt-have-ebola-probably.html

http://hyperboleandahalf.blogspot.com/2010/02/boyfriend-doesnt-have-ebola-probably.html
http://hyperboleandahalf.blogspot.com/2010/02/boyfriend-doesnt-have-ebola-probably.html
http://hyperboleandahalf.blogspot.com/2010/02/boyfriend-doesnt-have-ebola-probably.html

Bugs. Scary, scary bugs.

● a software defect that results in a
reproducible error or otherwise
unexpected* behavior

What is a “bug”?

● typos, “thinkos” (errors in programming
logic), or other implementation errors

● unexpected interaction between two
apparently unrelated parts of a software
program

● “bitrot” - lack of maintenance of certain
parts of the program

What causes bugs?

● the behavior is the result of a suboptimal
runtime environment (e.g., workstation
problems/conflict with another software
program, local networking problems/low
bandwidth)

What a bug isn’t

You may *not* have a bug if...

● you are unable to reproduce the issue with
the same steps you used to elicit the
behavior

● your description begins with the phrase “it
would be nice if…”

What a bug isn’t

You may *not* have a bug if...

● “Problem Exists Between Keyboard And
Chair”

PEBKAC

● Help Desk Manager (filter 1)
● Subject Matter Experts (filter 2a)
● Technical Support (filter 2b)

Example: The PINES Way

● decide whether this is a “local” issue or a
“system” issue

● if a system issue, decide whether it’s a
configuration/environmental problem or a
problem with the software
○ system logs
○ test server vs. production server

Technical Support

● have others reported this?
○ search Launchpad
○ Google the error message text
○ consult #evergreen IRC or the email lists

Research!

● create a bug report via Launchpad
● if it *is* a duplicate, it can be marked as

such in Launchpad

Report the Bug

Two uses for the bug tracker in the
Evergreen development community:
1. as a communication tool for development
2. as problem reports (similar to a Helpdesk)

What Happens Then?

● developers create bug reports for found
problem

● include proposed solution
● testers/other developers test the proposed

solution and sign off
● the fix becomes part of the core code

Bugs as Development Tool

● reported by those who do not have the
resources to fix the issue themselves

● from the user’s perspective, similar to an
IT Helpdesk

Bugs as Problem Reports

● bug reports can linger…

● nearly all Evergreen Developers and Sys
Admins subscribe to bugmail

Is this thing on?

● you are relying on *volunteer* efforts on
the part of community developers to fix
your problem

But...

● it *really* matters how you write the bug
report if you want community interest in
providing a solution

Therefore…

● your software versions (EG, Postgres, OS,
OpenSRF)

● detailed description, including error
messages (copy/paste)

● detailed steps to re-create the problem

Anatomy of a Good Bug Report

● “When I take the following steps…”
● “The following error message comes up…”
● “The end user expects…”

Phrases to Use

● writing in long paragraphs*
● telling your life’s story
● critical, negative, or blaming language

Things to Avoid

We’re not sure if this is a bug, or if we are
just not using the system correctly. When we
try to change and save the classification in
holdings maintenance, it doesn’t stay.

EXAMPLE: Good or Bad?

Why would an item indicate that there is a
Google Preview, but not actually display
one?

EXAMPLE: Good or Bad?

When an item is marked as “long overdue”,
overdue fines are not refundable; accrued
overdue fines that were voided at the time of
payment will be reinstated and subtracted
from the refunded amount.

EXAMPLE: Good or Bad?

Have the option to print labels to file.

EXAMPLE: Good or Bad?

When selecting Clear Shelf-Expired Holds
from the Circulation menu or when selecting
View Shelf-Expired Holds from the Browse
Holds Shelf interface, the resulting list should
only include items that expired before today.

EXAMPLE: Good or Bad?

Thank you!

Questions?

