
EVERGREEN 2020 ONLINE CONFERENCE

WEDNESDAY TRACK 2: ANGULAR CLIENT INGREDIENTS

JUNE 10, 2020

CAPTIONING PROVIDED BY:

CAPTIONACCESS

contact@captionaccess.com

www.captionaccess.com

http://www.captionaccess.com

>> It’s 4:00. Thank you all for coming. This is Bill Erickson's Angular

ingredients. I am Amy Terlaga. I am hosting this session. I am with

Bibliomation. Bibliomation is sponsoring this session. Closed captioning

is being sponsored by Equinox Open Library Initiative. We’d like to thank

our captioner. This is session is in meeting mode, not webinar mode. So

please leave your video off and your mic off and use chat when asking a

question or commenting. I think you can ask questions verbally, but if

you are comfortable with chat, use the chat. I am pleased to introduce

Bill Erickson. Bill, take it away.

>> Thank you so much, Amy. Hi, everyone. I have no idea who I am

talking to. I haven't seen you all in so long, and I was really looking

forward to seeing everybody. So I will just look at your names instead

and say hi.

I don't have the chat open. There is the chat window. I may not see

everything that is going on there, but I will try to glance over there

occasionally. I am going to talk about Angular -- today, as is often the

case with my talks, it's pretty code heavy. And I do these as much for

myself as something I can return to later as a reference.

Some of this may be a little eye-glazing at times. I will try to keep it

moving along and kind of like. It is a little bit short attention span theater

because there is no story arc or narrative here. It's a pretty random mix

of stuff. So the idea was to talk about kind of the main pieces that we

use when we are building interfaces on the Angular side. There is

certainly a lot of that going on, but I also wanted to make a point of

mentioning things that have come up and been problematic to me or

certain themes that I see over and over that you know, might have some

advice to offer. There is a fair amount of that going on, too.

And like I said, I'm happy to take questions at any time. In fact, it

probably a good way to pause me for a second. Otherwise, I will go

ahead and get started. I don't want to spend too much time on some of

the obvious things. My first light here is about the grid. The grid is one of

the things that is in almost every interface. And whether or not you want

to our care about it, you will eventually understand for the most part how

it works because it is so ubiquitous.

I thought I would mention one or two less obvious things. One thing I

make it a point of doing Now, anytime I built a grid, is I try to imagine the

ideal layout for someone using the interface. And one of the things we

can do is define specific columns by default and have the other columns

that can be added as needed.

Another thing we can do is tell the columns how wide they should be by

default. And I don't know how, knowledge this is, but there is a flex

review, which I will highlight here with the mouse, which allows you to

send a proportional with or -- set a proportional with the recall. So if you

have a grid with something like an ID column which is generally going to

be fairly narrow, it's just a narrow, something else like a title, you're going

to want the title column to be wider by default. So you can just set a flex

value, this is saying the title column is three times the size of the ID

column.

And discus you a chance to create something that at first glance makes

more sense to anyone using the system and it means they are less likely

to have to go in and change the column size for themselves.

Something else that is a little bit less known that is fairly recent is this

idea of a cell text generator. Someone just asked they should be hearing

audio. I am talking. So I assume someone is hearing audio. But I would

like to confirm that. Okay, great. Thank you.

It seems like audio in general is working.

One of the features that is available in the grid is the ability to print it in

tabular form or export to CSV. But you can also create grid cells that

have complex data that isn't just a text. And I have a picture at the top

from the Angular catalog of the barcode column pointlessly -- the

barcode and gives a link to do it and they link to jump to the edit

interface. So if you wanted to print something like this, there would just

be a big check of HTML that would make.-- not make a whole lot of

sense that column. So to allow for better formatting of those types of

data to create something called this cell text generator on the grid.

Anytime it finds a column that has attempted to find, we'll look to see if

there's a generator for in the code and here we have a column named

barcode and find the generator, a very simple one here that says when

you need the data for this column instead of rendering this complex

HTML, just render the barcode.

And we will see these also in the console, the Javascript console, where

if you have a template and you don't define a matching generator, it will

give you a warning.

Another handy widget is the orgfamilyselect. This allows you to specify a

chunk of the orgtree. So typically we have library selectors that allow you

to pick a library, a specific org unit. This lets you decide on an org unit

and then say whether or not you want to include all of the -- and

payment org units. This comes in handy in a number of places especially

admin interfaces or in grid filtering contexts. Under the covers, this looks

a bit like this. Just the main thing I wanted to point out is the model that

allows you to track the value is selected in that selector. They are going

to tell you the primary org ID which shows up here and whether or not

either of those checkboxes are selected, and depending on the situation

that either of these, it will include the selected plus an additional org

units in disarray here.

So it makes building queries based on a user selection here pretty

simple.

Date range selectors, there are multiple date pickers. There is a date

picker, this is one of the more interesting ones because it allows you to

select date range. You will see this in the looking reservation page. That

is at least one place where it shows up.

And you can pick a start date and you can page through months to pick

an end date to get the range you need. And then at the bottom you can

see what that model looks like under the covers. Once a value is set,

then you will have an object with these two different components in it.

On the Angular side, the access keys, which are the keyboard shortcut

commands, the code to do that is home grown. We don't have a third

party dependent docket dependents for that. That was something -- that

was a decision I made. Given the complexity, there are certain things

that can be done in 30, 40 lines of code that we should do in the long

run. That's where this came from. And if you are in all the Angular

interfaces and you type control H, it will give you this list of keyboard

commands that are registered in the interface.

And it will give you the command, the label or the action that is

document with the command, for the command is defined, and whether

or not it is active. If a command shows no as active, that means it

command was registered later on that precedes or supersedes, I should

say, and existing command. So it overrides.

And under the covers, it looks like this. Not two different from the Angular

JS market that you might see with this. But we have a directive, context

which is the navbarcode. Edit have at least two different key commands

that will fire this action. Description, all of these are marked as -- so you

can't change to work commands and discussion, and the discussion is

that i18N. So it can be a click command or any of those would be fired

when to in question is fired.

So jumping back here, we have two different check-in entries -- sorry,

Patron search. 14 F4, alt S. I can see and are given for collapsing this

down to one. This is just how it looks now.

This is probably the most eye-glazing one. But I thought it worth

mentioning. Two things on here I wanted to mention, that are relatively

new. On the Angular side. First is this thing called flesh selectors in that

PCRUD. This is a replacement for manual flesh entries, Edison

specifically related to when a class in the audio has a field in the link,

and the destination for that link is another class which has a field

described as a selector.

And you have seen this kind of thing in a drop-down. So you want to list

your copy statuses so you can pick a status. That label that displays for

available or checked out or whatever, those are coming from its being

labeled that we want this name field to be called a selector field.

It comes up in a lot of contexts, especially admin interfaces. So instead

of how to think about how you want to do the selection, you can grab all

the things you might want to display a name for them as opposed to an

identifier.

The second part of this is there is a thing called the format service. You

can pass all kinds of data and it will figure how to get it and display it. It's

good with dates. Dates and times, you can't it's -- locale and times

unaware, it has Boolean values and strings in all kinds of stuff. Want to

keep -- one of the things he knows that it is if you pass an object that is

defined in the IDL, it knows whether or not a certain field likes to a

selective -- selected class. And it will look to see if that has a flash

version. It does, it will display the selected value. So in this case, the

conflict the consult log, meta bib field class, and it will transit the

remainder of the value. Typically you would see meta bib field class and

an identifier. In this when we are seeing the name of the object.

So anytime you have an IDL object that you want to display a calm, and

you want to automate the process or not think about it, this formatter

comes in handy.

Another new interface component, relatively new, this was added along

with the Angular MARC editor, I keep looking at my face and drifting off

camera. This was added the added along with anger Mark editor. It's

essentially a list of key value pairs and you take an input and you tell it

that you want it to be a context menu and you tell it what to do in an item

-- and an item in here is selected.

As far as the entries, your giving it a set of values label pairs. So in this

case I have a component or something with an array of things called

stuff, and adjusts markers out and the end up in the context menu.

One thing of note on the chunk of code down here is I have these

parentheses here. Some of you who are familiar with the arrow notation

for fonts, you don't have to have function brackets if your just doing one

line of code. But if your one line of code is an object that starts with

brackets, you're going to confuse the compiler and us when to expect

you to have -- that thinks that it's needing a function one sees this

bracket here. You can get around that by putting it in parentheses, and it

knows that whatever is inside the parentheses is a single return value.

Or you can have a return value but either way works fine.

This, to me, and we have the same thing on the Angular JS side, as one

of the more clunky and festering parts of the development process we

have this thing called string component, which the reason we have it is

because we don't want to just put their strings into code because it we

can't translate them into other languages. So we take advantage of the

functionality the built in, in Angular or -- and that way we can defined

strings in the templates that are translated into templates and the strings

are accessed by various mechanisms encode.

But this is a fairly simple example. Your just defining a string, given

getting it and I don't fire, and giving it test, and then you can access the

text various waves.

Here's a more propagated example. You're adding logic to the template

that renders the string value, and then you're telling the string to use

specific data at runtime to fill in the template so it can apply the logic

based on the individual tab and query value.

So this is a lot to type. Just to say search, :, piano music. That's all this

boils down to. I'm just here to save -- to say that there is hope for the

future this that it will be a lot easier. As of Angular 9, which we have not

migrated to yet, they have introduced -- I don't know if it's a service or

what they are calling it exactly, but there is a way for you can type code

-- or excuse me, type strings into the code and tag that is being

translatable.

So in the end, we would have all of this would be replaced with

something pretty close to this. It would have a variable at the end. So

that's extremely exciting. And I can't wait to start using that. There is a

caveat, with Angular 9, at the time I was less reading about this, that the

code which generates translations is not yet capable of reading the

translations from the typescript code, so you have to manually add them

to the eye because of the XMB files that will be uploaded to the

translation service.

So that might get in the way of using it for Angular 9. But it does seem

like there is at least -- this is great progress. That's probably hardest part

that we wanted getting to get taken care of. So teaching that energy -- I

forgot what it's called, but it's a command that generates the translation.

So it is how it’s taught to read the stuff out of the code, and we can get

rid of a lot of the stuff.

Something new that was just merged on our way to wrapping up the

current batch of releases was a new addition to the IDL called

configfield. You see it here in the example. And this is a handy marker in

the IDL that says when you are rendering rows of this type of data in a

grid, potentially other contexts, but for starters, this is for admin strata

grids, then you can render this field as a link to another table which is a

relationship to the first class.

So the example that came up in launch pad that was the first example

working, was the C 39 source attributes field. So you will have a Z 39

server, LC, et cetera, and the link to that is a set of attributes that you

use for searching. And before we had to such analogy, there was no way

to jump from one to the other. In fact, there was no weight to get to the

secondary interface at all.

So you can go to the source page, and we have a link for the attributes.

If you click on the attributes for the source, it's going to add a -- first of

all, it's going to take you to the attributes page and is going to filter the

results to those that relate specifically to the LC source. I will show you

what that looks like.

That's kind of a limited picture, but this would be the attributes grid and

the reason is small is I wanted to capture this part along the top here.

There are two ways to apply filtering to the grid. There is via the URL, so

that's when talking about here, and it shows the filters that are applied

via the URL and it gives you an option to clear this filter so you can view

all the items.

And that leads me into the general more purpose grid filters. These have

been around a little bit longer. But this is something that is turned on per

grid, these are in-line filters and they provide different options for -- I

should've had a picture of the drop down, sometimes it's hard to do that.

Loses focus and it disappears. But it gives you different options for

filtering so over here on the string value for example, will let you do start

with, greater than, less than, those of things like that. On the hook

column, this is a primary key value so all you say is equals or is exactly

in effect.

But this functionality is there for grids. I want to point out if you are using

this, you have to, as with all the grid data, you have to wire it up and get

it working the way you want it to work.

So under the covers, this guy, when you are providing data for the grid,

it's going to be an excerpt item on your data source called filters and is

going to have one or more filters attached to it based on the name of the

column. And there is a filter clause under there. And you essentially add

these to the query that you're making to retrieve data from the server. It

could be expanded out to other APIs to read this.

Another new thing is server print templates. I don't think people have

had a chance to interact with this yet pick there are only two examples in

the matter server right now. One is just an example of how to -- that

ports over the Patron access template. Since we are still using the angle

JS for that, people haven't read interact with it yet. And the second is a

hold for record, and that's the spirit metal staff Angular -- so not a lot of

people have had the need to look at these.

But it will become more important as we move more interfaces to

Angular, and the general concept, it's fairly similar to an Action Trigger

type of thing, though it's focused specifically on printing. You had leased

template toolkit things and they have a fairly narrow set of functionality

desires they can do. From the client you pass a template data object and

it just gets rendered into here, and return to the client is an HTML page

of the client renders that either through hatch or -- level printing, that

gets sent to the printer.

The main reason I bring it up. Like I said, it will be needed more for the

interfaces. But it does allow you to do things like apply a locale to a

template. So if you have a staff member logged in at a different locale, or

say for example, you know a Patron's default link is different, you can

take advantage of that different context.

So these will start showing up more as people set up coding interfaces.

And this is the admin UI for managing those.

A topic that has come up quite a few times in recent memories, in launch

pad, is the wonderful power that we have with being able to especially

broadcast huge numbers of API calls to the server, through the XML stuff

or through web sockets. It really kind of encourages you, for the sake of

speeding up the interface to parallelize a lot of data collection, send it a

lot of stuff off at once.

And for various reasons, this being one of them, we have been seeing

certain cases where the server is just getting hit with way too many

requests at once. So something that I have started doing is being a little

more conscious of this, especially on any type of batch operation or

page load operation. So this is something that I might have written some

time ago where I wanted to load four different things simultaneously is a

certain pager component was loading. So these are get blasted off at

once. The server is hit with four requests, and generally is not that big of

a deal. Evergreen does well with parallelized processing. But if you're

sending off too many, can be problematic because you are exhausting

resources on the back end.

So this is kind of the alternate version of that that I started doing now, as

I tend to by default and sure that everything is loaded in cereal. So that

one client is making a request, given a response, et cetera. I will do this

as my default. And this is a very typical -- most of my components of a

load function that looks exactly like this. Of course, we have found

scenarios where it really just needs to be a little bit faster, then one

option is to do more paralyzed ocean of parallelization. Another option

which I started doing more and more of his turning these four calls into a

single API call that is custom-built for this interface.

That we benefit both from the speed of doing four things at once, while

at the same time only having a single API call to the server.

Some of these things I'm suggesting, it's stuff I have come across, things

that work well for me. Most of this, is not the gospel, it's just how I found

it to be working well for me at what I think probably makes sense in

those cases.

So toward the end, if there any questions, any comments about any of

this stuff, and definitely glad to hear it.

Like I said, this is all over the place. It's basically, I take notes when I'm

writing code of stuff I can use and I come back and talk about it.

As of Angular 8, you find it is hard to merge changes between Angular 8

and 7. Because there is a new required field on this thing called view

child in the Angular components. The child is a way to get references to

child components on the page. So just to kind of demystify the -- with

Angular 8, the flag called static can be true or false. And if the value is

set to default, that means that this my component variable is not

available until the after view hook. After view in it hook. Angular has

various what they call lifecycle hooks so that you know of a certain point

in Page rendering what is happened or not happened yet.

So after view in it is a little later on of the process and more the page

component has been fleshed out at this point.

If the -- was set to true, then you have access to this variable in the

oninit function.

My default going forward is meant to use false and that is based on the

fact that as of Angular version 9, that will be the assumed default, which

means that we won't have to have these in the code anymore and the

migration tool well do them for us.

And the other part is, they basically say you only really need this under

kind of atypical circumstances.

So I generally just move everything to false going forward. And then

being aware of when this variable can be accessed.

And related to that, when we have child components like this, I will have

a component within a page within identifier loading process of loading

progress, you do have to be careful, regardless of all of this, when you

do this -- my component or in this case loading progress. Because

depending on how you have defined whether or not this component even

exists, if it doesn't exist, then that is going to throw an exception.

Because it comes into it out of existence based on its existence in the

page.

So an example of why it wouldn't exist in the page, is if you are wrapped

in an NGF block, and this variable is set to false, this would not exist.

And if you tried to use it you get an exception.

As a comparison to that, if you did something like a hidden block, which

does not prevent us from existing, it's a plea prevented from displaying,

then you can reference this thing any time after the after view in it.

Because it will disappear until has been put into existence. After one

caveat about that, if this is a giant complicated component, then you

don't want to just hide. Because of it is hidden, it is still occupying

resources. So that is a case where you want to prevent the component

from existing all and do more of an that -- ngf thing. But this, I think you

can get away with without too much trouble.

This is different from Angular JS. I will show you an example in just a

second. The general idea is if a component exists in Angular and there is

no reason for it to go away, while performing actions like changing your

route or other variable data, then the component is not going to be torn

down and rebuilt and reinitialized every substantiated and all that stuff

for speed reasons going to stay exactly as it was. So if you want these

sort of child components to respond to external stimuli, like input variable

change, you can teach it to do that. I was want to show an example of

that real quick.

This is the Angular catalog. And it's a search result set and I'm on the

title detail page. We have two main components here. We have book

summary along the top, and the tab that is currently being displayed, just

the mark MARC HTML tab.

So this component was taught to respond to rat changes. Probably not

easy to make out over the interface pick but here you can see there is a

bib record ID in the route. So if I click next, it change, and the HTML

changed.

And the reason changed as it was taught to watch for changes in the

route and it re-renders itself using appropriate identifiers. The same kind

of thing happens up here, but this is more of a general-purpose

component that doesn't know anything about the route. So it knows to

watch for changes to its input variables into re-render itself as needed.

So the way that looks, code, is the two different types, again, route level

changes, the first one here, this is a difficult thing that I have a lot of

interfaces that I make. You will subscribe to the activated route,

parameter map, this is an observable that fires every time anything up

and that URL changed. Anything I care about is going to show up in this

subscription. And it does fire once on Page load. So you don't have to do

this logic once and do it again inside of here. You can do it all inside of

the subscription. Basically I'm saying, what record ID does not appear in

this URL, is it different from the one I already loaded? Let's go ahead

and load it. We are going to reinitialize ourselves.

And then going back to the alternate form, input changes, that would be

kind of the record summary here. It has an input and instead of being a

variable, it's a set function and a get function. The set function is

watching for changes, of course, and it does have similar logic if the ID

that was provided is not the one I'm already checking, that I will reload

myself. One caveat here is a you don't want to do this before in it has

run. Because typically that's when you do the first load of data. So you

don't want to do this before that and then read it again because were

justification effort. So have taken -- tracking whether or not this code has

completed and only after that's done will I ever reload based on a

change of input. You have to be careful. These will get undefined data.

The photos are called at every level of the process. So if you regular ID

is passed, you're going to get Noel and that he find here. So you have to

be conscious of what is coming in.

I mention this only because it's going back to those themes and patterns

that I see over and over. The introduction of observables is very powerful

and use it for all the network stuff. Process streams of data unlike

standard web promises, which are basically a true/false type of thing.

They can return different things, but it is one or the other response.

Success are not success. Where the observables give you results,

success, or possibly an error.

Often you will see things for you have to process a stream of

information, but then the color just wants a promise, yes or no, that it's

done. You could do that with observables, but in some cases the library

would be expecting across.

So this is a common workflow I use a lot in my code for a want to

process one thing at a time because I'm expecting a large list of them

because I don't want to grab them all in one chunk. I want to get a string

of them. So is that string comes in, I can pass it off to some function

using this tab function which is part of the observable API. So you are

generating an observable, paving the observable, and saying I want to

look what's in there. I want to do anything to it, just like don't look at what

is in there. And then turn the whole thing into a promise and you can be

compliant with the code that wants a promise instead of an observable.

You'll see this quite a bit. Other times, you will see this mixed in with

merging and merge mapping. So you're just taking multiple observables

and coalescing them into one.

So this is just some suggestions that I have for development that I wrote

down, the company for nearly now and then. So I thought they might be

helpful.

First and foremost I always recommend that you symlink into your --

every time you hit save in the browser you just apply the updates. You

don't do any think else. That said, toggle over to your browser, hit

refresh. In the code changes. That's a lot easier than copying stuff

around were certainly not doing and install. You can encode really

quickly with this setup.

For those of you who have done work on the Angular side, you may

have been greeted by this page and expected we sometimes or even

better, this page. There is a certain level in the Angular rotting process

where if it bombs out, then exception is thrown, it's unable to completely

rotting, and it will send you back to the base page. Or in some cases it

won't even do that. It will just throw up his hands and quit.

I always bookmark the URL I am looking that working on, so if this

happened to get back to it instantly. Because when this happens you

can't just click the back arrow to get back to where you want to go,

because essentially won't lock to that because it knows it's broken even

if you reload, it's going to go back to the less successful route. It's a little

bit annoying when this first happens, but if you can get through quickly,

it's not too troublesome.

For those of you using vim as a text editor, answer their other similar

options for other text editors. I recommend adding this to your vim RC

file. Trends white space from script files. This is really handy for running

ng lint. One thing that our lint configures and says as we don't want to

know point spaces with the code. So instead of having to take us out by

hand, you can set this up and it will clean it up as you go. It is very

handy.

And the prod versus death builds, they archly build differently. The prod

builds can do much more deep compilation. In particular they dig into the

HTML. So if you do a prod built, you can do a lot more about problem

the problems in the code. It will show you where you have a function

defined in the text script and you called it in the code with a different

number of parameters. And prod build will tell you, you are calling

function correctly. And it will do lots of other things, too. So is like a

secondary there a checking tool. And that's something that should

always be done before or after merging file code.

And lastly, back in the early days of Evergreen, sometimes we would do

programming to kind of learn how each other operated. I learned a lot

from those guys and I decided to try to continue that tradition. So this is

my pair of programmer for now. He's really good at telling me when I'm

doing things the right way. His name is Booger. And he will let you know

what he thinks.

So I can open the room for questions. That was a lot, I know. It was an

onslaught of coder information.

Booger is a Boston terrier. Regarding the cases where you want to use

view child, status and cost true, haven't found it yet. They mention any

documentation -- let me find that again. Here's the URL. I will just pull it

up. Is there a case where I should use static true? I will let you read that,

it had to do with the situation I haven't really encountered. Yes. The dog

has amazing under bike. Crooked teeth. Yes. Pulling from Jason

regarding the symlink trick, you have to be careful with that and installs,

because I think it will choke when it -- that's an excellent point. My sort of

local quick and solid script means that out of the way. And it puts it back

into place.

The slides are fairly sparse, but I do have a link to them. That includes

the slides themselves and the compile HTML, take single file you can

load up in the browser. And just for experimentation, say I did this for

markdown, I'd never used it before, so the bare text might look a little

different.

Okay. It's fairly quiet over there. Someone just said my name. Well, looks

like we’re doing good here. We are getting close to time, anyway. I

believe we have another virtual happy hour at 15 past the hour. So if

there aren't any more questions, I guess I will let Amy wrap this up.

>> There was one last one.

>> I missed that. There we go. How do you like Typescript? I absolutely

love it. It's a pleasure to work with. Chris mentions Visual Studio code as

a good editor. I have used that as well, and is -- it is really handy

because it will give you typing suggestions and other kinds of

suggestions. That are really useful. It will warn you if your importing stuff

you don't need or referring to things that don't make any sense, all in real

time. It's really cool.

I believe the sessions will be sent to the mailing list. Possibly all the

attendees. I'm not sure, once they have been sorted through and edited.

A lot of love for VS code.

>> Okay. Is that it? Okay. Thank you, Bill. I like your style, dude.

(Laughter)

>> Thank you all. I'm glad you all could make it, and it's great to see you

all virtually.

>> And that is the end of the sessions for the day. Bill, back to back, I

had no idea. Good for you.

>> Fortunately, the first one was a panel. So not too much.

>> Okay. There is going to be a happy hour if I don't experience any diff

dock taken the difficulties on my end. It's limited to 100. I have no idea,

we might get 10, we might get 100. I hope to see people there.

>> Well that be on this channel?

>> I wish it had been this channel. If I had had some good foresight I

would have kept it with this channel. But I didn't. I created a separate

one.

>> You have about 25 minutes to do some pre-gaming.

>> Deathly think. I should ask that. If people want to just do some kind of

games, if we are going to create breakout rooms. There are themed

breakout rooms, but they aren't happening. I'm going to keep it loose.

>> So people are chatting at the end of the day.

>> The pre-gaming has already started. Everyone has gone loopy. Me

included.

>> I'm going to turn off my video and take a break. Thanks, everyone.

>> I will say goodbye to anybody. Goodbye.

